
 
 

 

 

 

 

  

 

 

Optimization and quick 
verification of an electric vehicle 
rocker design  
 

Before released to the market, all vehicle prototypes are validated 

in terms of their crashworthiness. Meeting the safety standards, 

while same time avoiding compromises in other essential design 

parameters, requires a very meticulous engineering simulation 

approach. Taking advantage of the Machine Learning capabilities, 

the optimal solution can be quickly estimated during the early 

design stages. 
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Introduction 

Before released to the market, all vehicle prototypes are validated in terms of their 

crashworthiness. Meeting the safety standards, while same time avoiding compromises in other 

essential design parameters, requires a very meticulous engineering simulation approach during 

product design. These processes become even more complicated, and time-consuming, with 

electric vehicles, such as Lithium-ion battery-powered cars. In many cases to accomplish the 

safety aims during product design, while also meeting time limitations and deadlines, 

sophisticated simulation tools need to be employed. Such tools are those that enable 

optimization studies and that take advantage of Machine Learning capabilities. 

In this study, an optimization and a quick verification of an electric vehicle rocker design were 

performed with the aid of an Optimization tool and Machine Learning methods. 

Through this Optimization tool, several Design Experiments have been created and then, by 

training a Machine Learning model (referred to as a “Predictor”), the optimal design parameters 

were approached for the given objective and constraints. Since during the designing stages, the 

geometry can be often modified, the proposed approach saves a considerable amount of time, 

as it avoids repeating the complete ML Optimization process or solving each updated model 

individually. To accomplish this, Transfer Learning methods were utilized to employ the already 

trained ML predictive model to verify and optimize the updated geometry. This way, an optimized 

design for the updated model can be calculated, avoiding re-training an updated Predictor and 

producing new data sets. The use of this already trained Predictor extends also to the field of a 

quick verification of the newly updated designs. The several design modifications were quickly 

tested without needing to solve the model again. To further reduce simulation time and modeling 

effort, a macroscopic battery model was used. This way, the ML Predictor was able to also 

consider the electromagnetic phenomena related to damaged batteries without increasing the 

solution time of the side-crash simulation.  

All in all, using the Machine Learning-based Optimization tool and the Transfer Learning related 

functionality, an already trained predictive model was able to verify any updated designs and 

estimate an optimized vehicle model with updated components without having to re-run the 

complete optimization and solution processes.  
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1. Optimization method and model description 

The current study focuses on the crash simulation of a Li-ion battery-powered EV module 

platform which is imposed to a side collision with a rigid pillar at 60 km/h. For the battery 

modeling of the li-ion batteries located inside the platform, the macroscopic battery model 

“BatMac” based on the equivalent Randles circuit was used [1]. For the investigation of an 

internal battery short, LS-DYNA provides a keyword that triggers the short when the criteria 

defined inside the function are met [2]. In the current case, the shorting conditions are based on 

the stress values applied to each cell. When the stress exceeds a particular value, an internal 

battery short occurs [3].   

 

 

 

 

 

Figure 1: Affected batteries during the Side-crash event 

Figure 2: EV Rocker Cross-Section before and after the crash event 
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Regarding the optimization workflow, a set of pre- and post-processing functionalities were 

used, accelerating the optimization process of an electric car platform design, using the 

embedded Machine Learning Optimization tool [4]. Specifically, the process consists of setting 

up an Optimization Task which embeds the Design of Experiment method to produce several 

DOE studies. The design parameters whose value varies from study to study, are referred to as 

Design Variables, and the dependent critical results as Responses. Based on these datasets, an 

ML Predictor is trained using the Response Surface Model. Then, the objective and constraints 

of the Optimization Study are defined, and finally, by utilizing the predictive model of the 

Predictor, the Optimizer returns the optimal solution. In the studied optimization scenario, the 

objective is to minimize the number of damaged batteries without increasing the rocker’s mass, 

and hence, the corresponding values were assigned as Responses. The defined Design 

Variables are the rocker plates’ thickness and location variation along the y-axis. 

 

2. Predictive model and optimization results 

The values of the design variables are obtained by the Uniform Latin Hypercube DOE generation 

algorithm. For each iteration, the generated experiments with the different DV values are solved 

and post-processed as assigned in the Optimization Task workflow. This way, a file repository 

occurs, containing all the necessary data to train a predictor. In this case, 100 DOEs were solved. 

To evaluate the quality of this dataset, information can be retrieved from the Correlation Matrix 

(Figure 3) and the Pair Plot of the DVs versus the Responses (Figure 4), as well as the Power 

Predictive score. In the following matrix, the correlation is described through a factor that 

fluctuates between -1 and 1. Values close to 0 mean that there is not any relationship between 

the DVs and responses, and values closer to 1 and -1 mean that there is a strong correlation. In 

this case, it is highlighted that the mass is mainly affected by thicknesses 1 and 2 and the 

number of damaged cells is affected mostly by Plate Location and Thickness 2. The positive 

and negative signs imply that the variables are proportional and reversely proportional, 

respectively. Considering the Pair Plots, each DV’s values are depicted versus the corresponding 

response value. In the plots where patterns are noted e.g. in thickness 1 vs mass or Plate 

Location vs Num. of damaged cells, it is safe to assume that there is a linear correlation between 

those variables.  
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Figure 3:     Correlation Matrix 

 

 

 

Lastly, the predictive power score (PPS) is an asymmetric, data-type-agnostic score that can 

detect linear or non-linear relationships between two columns. The score takes values between 

0 (which means no predictive power) and 1 (which means perfect predictive power). For the 

Mass, the PPS is 0.98 whilst for the Number of Damaged Cells is 0.64. 

The occurring calculated predictive model calculates the relationship between the Design 

Variables and the Responses using a Regression method. Once the predictor is trained, graphs 

are reported giving information about the quality of the Predictor (Figure 5).  

Figure 4:    Pair Plots of the Responses vs. DVs 
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The following bar charts (Figure 5.a) sort the design variables according to their importance in 

the optimization process. As shown, the number of damaged cells is mostly affected by the 

plate location, whilst the mass mostly depends on the thickness of plate 1. Then, from the 

variance estimation graph (Figure 5.b), the predictions with their confidence bounds are 

indicated. The Minimum Average Error of Variance and the Accuracy are also calculated where 

the first equals to the minimum error of the confidence bounds for each prediction and the 

second is the percentage of the configuration bounds that correctly include the ground truth 

value. Afterwards, from the next graph (Figure 5.c) the relationship between the size of the 

training dataset and the accuracy is depicted, highlighting that predicting the mass accurately 

requires far less DOEs in comparison with the number of damaged cells. The last graph indicates 

the deviation between the target and the predictions by overlaying their values (Figure 5.d). 

Number of Damaged Cells 
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(5.a) Ranking of DVs Importance regarding the number of damaged cells 
 

 

  
 

(5.b) Variance Estimation Graphs 
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Number of Damaged Cells 
 

Mass 
 

  
 

(5.c) Dataset Size vs. Accuracy 
 
 

  
 

(5.d) Target vs. Predictions values 
 

Figure 5:    KPI plots 

 

Finally, using the Differential Evolution method, the Optimization Study is run resulting in the 

optimal solution. As shown below (Figure 6), all the studies explored by the Optimizer do not 

exceed the Mass constraint of 36 kg. The optimal solution is the last study which suggests that 

the predicted mass is at 24.5 kg whilst the predicted damaged batteries are 37.  
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Figure 6:   Optimization Studies: Mass vs Number of Damaged Cells 

 

 

 

Figure 7:   Left: Initial rocker design, Right: Optimal rocker design 

 

Moreover, the optimized model is normally solved to validate the optimization estimations, 

while also to evaluate the optimization results in overall. 

 

Table 1: Evaluation of Optimization Results 
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3. Quick verification of the modified EV model 

The predictive model trained previously can be used in cases where the initial model has been 

slightly modified on areas affected by the design variables (Figure 8) and they have a relatively 

high similarity factor among the parameters of the baseline model. The response values can be 

quickly predicted without requiring solving the model. So, this way, the changes in the geometry 

can be quickly evaluated. Again, the results were validated, highlighting that the change in the 

plate’s thickness will worsen the crash behavior of the vehicle. This way, the designers can save 

a significant amount of time during the early design stages, as they are prevented from following 

the wrong design direction without requiring solving numerous design scenarios.  

 

Figure 8:    (a) Left: Initial rocker design, (b) Right: Modified rocker design 

 

 

Table 2: Evaluation of Quick Verification Results 

4. Conclusions 

To conclude, the ML Optimization process discussed in this study introduces a semi-automated 

way: (a) to produce the required data to train an ML Predictor, (b) to estimate the optimal design 

of an EV using the trained Predictor and (c) to quickly evaluate potential relatively small 

modifications to the Baseline Model without demanding training a new predictive model. Lastly, 

the embedded plotting functionalities facilitate the visualization of the ML-related results, 

allowing the inspection of the quality of the training dataset, the Predictor accuracy, as well as 

to evaluate the whole Optimization process. 
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