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Incorporating CARLA data and Machine Learning can enhance 

vehicle safety by using "real-case" data to predict occupant 

injuries, optimize safety parameters, and improve design methods 

beyond regulated scenarios. 
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Introduction 

 

Currently, simulations of crash tests, such as physical crash tests, are conducted within a 

controlled "lab" environment, utilizing prescribed scenarios and regulations. Load cases and 

boundary conditions are meticulously and precisely defined to ensure the safety of occupants 

and pedestrians within acceptable limits, as well as to certify the vehicle for road use. Although 

these design methods and safety protocols have continually improved vehicle safety, "real-

case" crash scenarios are not much tested. 

 

In this work, "real-case" data from an autonomous driving software was employed for 

crashworthiness simulations, extending beyond regulated scenarios, through the utilization of 

Machine Learning. The CARLA software, a simulator for autonomous driving, is capable of 

reconstructing and simulating real-world traffic accident scenarios, involving various vehicle 

types, and providing pre-crash data such as speed, position, and angle. 

 

The data from the reconstructed accident scenarios are utilized as input in Finite Element 

Crash analysis to yield results pertaining to occupant injuries. Datasets featuring various Finite 

Element models and diverse crash scenarios, assessing occupant safety, are created for the 

training of Machine Learning models capable of predicting occupant injuries. These Machine 

Learning models are employed to optimize the control of occupant safety parameters, such as 

airbag deployment time and seatbelt triggering. 

 

More precisely, in this study, CARLA provided data related to a specific vehicle involved in a 

rear crash scenario, one of the most common types of accidents. The input parameters 

included speed, velocity, and the relative position of the two vehicles. Finite Element analyses 

were conducted for several variations of the crash to measure occupant injuries, thereby 

establishing an appropriate dataset for training a Machine Learning model. The trained 

Machine Learning model was subsequently utilized to predict the occupant injury criteria 

based on various inputs from CARLA and optimize safety system parameters to enhance the 

safety of vehicle designs. 
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Scenario selection 
 

According to vehicle safety institutions (i.e. IIHS, NHTSA and the NSC [1], [2],[3],[6]), the most 

common crash scenarios that inflict more injuries and deaths are the vehicle-to-vehicle 

collisions. The highest percentage of such crash scenarios refers to Rear-End or Angle 

collisions (see Figure 1). Additionally, crash statistics on the conditions of the crashes in terms 

of speed, type of crash, weather conditions, time of day, etc., show that the vast majority of 

such accidents happen during daylight in clear weather conditions. 

For this study, a rear-end collision between two sedan vehicles was chosen as it is the most 

common traffic accident. The CARLA software was employed to collect various rear-end crash 

data. CARLA is an open source software used for testing and validating autonomous driving 

systems. In this case, a sedan model was simulated in CARLA using the Unreal Engine. To 

simulate the physics of such crash scenarios, we utilized CARLA's Scenario Runner framework, 

where during each time step of the scenario execution, extracted collision related data such as 

speed, position, and rotation information for each simulated vehicle. 

 

 

Figure 1: Selected NHTSA inspired pre-crash scenarios  

 

 

Finite Element modelling – DOE 

 

To simulate the crash between the two vehicles, Finite Element models of a sedan car were 

used. The leading vehicle remained stationary without applying any braking, while the rear 

vehicle was in motion. The rear Finite Element model was equipped with a passenger airbag 

and a seatbelt restraint system. The passenger Anthropomorphic Testing Device (ATD) used 

was the LSTC 50% rigid FE dummy. 
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In order to be able to simulate the crash for various rear-end collisions, three design variables 

were controlled to position the speeding vehicle prior to the crash (refer to Figure 2). These 

variables included initial velocity, overlap, and angle. Two additional design variables 

controlled the timing of airbag and seatbelt ignition. 

The responses for each Finite Element analysis were the Head Injury Criteria (HIC), that 

indicate the severity of the collision (see Figure 3). HIC15 (max value in 15ms) was selected as 

the most commonly used head injury criterion among regulations. 

 

 

 

 
Figure 2: Crash scenario Position variables 

 

 

A Design of Experiments (DOE) process created 35 designs using the Optimal Latin Hypercube 

algorithm and ran the FE analysis for each one. The post-processing was performed 

accumulatively for all experiments in an automated manner, to extract curves, pictures, videos, 

and the important key values needed for the Machine Learning training. 
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Figure 3: Head acceleration curves and HIC values 
 

Machine Learning – Optimization 

 
The DOE served as the initial dataset for training predictive models also referred as Predictors, 

designed to predict responses within seconds. 

Utilizing a data-driven Machine Learning approach, a Predictor was developed to forecast the 

HIC15 responses (refer to Figure 4). Through the utilization of Key Performance Indicators 

(KPIs) and an additional validation process, this Predictor was thoroughly validated, and its 

accuracy was deemed suitable for the purposes of this study. The KPIs also aided in 

identifying the most influential design variables and in evaluating the overall performance, as 

evidenced by the target versus prediction overlay and learning curve (refer to right side of 

Figure 4).  

The trained Predictor was capable of providing responses like the HIC15 and other related 

metrics, instantly, making it an invaluable tool for expeditious optimization studies. The 

objective was to pinpoint optimal parameter values that would minimize head injury-related 

responses, applicable across various crash scenarios with varying velocities and crash angles. 
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Figure 4: HIC15 Prediction for theoretical scenarios 

 

Random crash scenarios generated with CARLA 

 

To achieve our objective it was necessary to have a Predictor that would be able to predict the 

optimum parameter values for the seatbelt and airbag trigger offset time for every possible 

crash scenario. In order to create such a predictor, it was required to collect crash data from 

multiple real rear-end crash cases. Since we were not able to collect crash data from actual 

accidents, we employed CARLA, a software that supports development, training and validation 

of autonomous driving systems. In our study, we simulated 65 scenarios involving collisions 

(see Figure 6). The vehicle utilized within CARLA was carefully customized to match the same 

dimensions, center of gravity coordinates, and mass as our Finite Element (FE) model in order 

to have consistency between the FE analysis input and the collisions simulated in CARLA. For 

each of these scenarios, we systematically recorded data related to Velocity, Rotation, and 

Translation (abbreviated as V, R, T), as generated by CARLA software (refer to Figure 5). 

 

 

Input Output 
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Figure 5: Crash scenario characteristics (Coordinates, Rotation and Velocity of both vehicles) 

 

Figure 6: CARLA: Autonomus driving simulation software interface. Collision simulation 

  

A distinct optimization study was defined for each specific crash scenario simulated in 

CARLA. In each of these optimization studies, the design variables related to velocity and 

position, which were derived from CARLA, remained constant, while the variables associated 

with airbag and seatbelt trigger offset times were allowed to vary (see Figure 7). The objective 

of these optimization studies was the minimization of the head injury. The optimum 

experiments would provide the optimal values for trigger offset times, while achieving the 

lowest possible HIC15 value.  

Running 65 optimization studies, one for each collision scenario with the DIRECT method, 

meaning going through the stages of pre- processing, FE solution and post- processing, would 

require huge amounts of resources in terms of time and computational power. For this reason, 

all optimization studies were defined to run with the Response Surface Model (RSM) method. 

This means that instead of going through the aforementioned steps, the previously created 

Predictor was used throughout the optimization to predict the required HIC15 response value. 

With this method, the 65 different optimization studies ran within minutes, saving a 

considerable amount of time and CPU usage. 
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Figure 7: Optimization Studies for different crash scenarios 

 

Each optimization study ran for an average of 200 experiments (Figure 8). From each of these 

optimization studies, only the best experiments (two or three optimum experiments per study) 

with minimized HIC15 and optimum trigger values were collected, thus creating a new dataset 

of 150 experiments. This new dataset contained experiments of all the possible collision 

scenarios simulated with CARLA, with the optimum trigger offset times for airbag and seatbelt 

sensors. Essentially, this dataset had answers to the question, “what should be the trigger 

offset time for the airbag and seatbelt, if the crash occurred in a specified way (velocity, 

overlap, angle) in order to get the minimum head injury”. 
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Figure 8: Optimization results for all optimization studies 

 

Prediction of optimum ignition time  
 

The previously created dataset of 150 selected optimum experiments was used to train a new 

predictor.  

 

Figure 9: Predictor trained with the optimized dataset to predict optimum airbag and seatbelt 
trigger offset times for minimum head injury 

Optimization for each crash scenario 

Input Output 
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The resulting Predictor was able to instantly predict the optimum values for the trigger offset 

times with a given input of velocity, overlap and angle (see Figure 9). Meaning that for any 

possible crash (within the parameters range given during the training) the vehicle’s safety 

systems would operate in the best possible way (optimum trigger offset values) to reduce the 

occupants’ injury, which was the aim of this study.  

 

Validation 

 

To verify the accuracy and potential of this process, validation experiments were defined, 

checking whether the HIC15 prediction values were similar to those the FE Analysis would 

calculate. 

Six random experiments with random Velocity, Rotation and Translation values were selected 

as input values. Using the latest created predictor, the responses of airbag, seatbelt trigger 

offset values, and HIC15 values were predicted. These input parameter values (Velocity, 

Rotation and Translation) were then applied to the initial parametric model and the FE Analysis 

ran for each of the six experiments to compare the HIC results (predicted vs FE-calculated). 

 

As we can see in the Table above, the difference between predicted and calculated HIC15 

values is relatively small, suggesting that this process can be considered as successful. 

 

  

Scen

ario 

Input Output Prediction FE Result Absolute 

error 

 
Rotation Z 

(Deg) 

Translation 

Y (mm) 

Velocity 

(mm/ms) 

Airbag offset 

(ms) 

Seatbelt offset 

(ms) 

HIC15  FE HIC15 
 

1 0 150 13.8 23.2431 28.1003 23.974 29.838 5.864 

2 -8 50 22.2 20.2567 27.7276 75.198 85.339 10.140 

3 0 0 9 24.1967 27.6094 9.172 5.554 3.618 

4 -5 80 12 22.9283 28.033 18.887 14.681 4.206 

5 -5.06 259.9 11.4 22.2304 27.7675 17.366 15.542 1.824 

6 -16 500 18 25.86.22 27.7982 75.798 90.86 15.062 
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Summary 
 

In this study we have defined a DOE with a parametric two car crash case considering a 

dummy, a seatbelt, and a passenger airbag. A Machine Learning Predictor was trained using 

the DOE, to “replace” the solver and predict the simulation results for theoretical future 

experiments. 

 

Random rear-end crash scenarios were generated in CARLA, based on the most common 

crash cases according to NHTSA, to obtain Velocity, Rotation and overlap data. The previously 

created predictor was used in optimization studies as response surface models to quickly 

identify optimum airbag and seatbelt offset times, minimizing the head injury criterion for each 

of the generated crash scenarios. 

 

Finally a second predictor was trained based on the previous optimization results, to provide 

optimum airbag and seatbelt trigger offset time values when given a new crash scenario 

(Velocity, Rotation, overlap). The validation of the predictor was made with a six random 

experiments and demonstrated small difference between predicted HIC and calculated HIC, for 

the optimum trigger offset times.  

 

Conclusion 
 

Today’s vehicles could take advantage of such a functionality that can provide optimum 

systems settings (such as passive or active safety features) customized to the accident while 

it takes place, aiming to achieve the lowest possible injury. Additionally such predictors could 

be constantly updated as vehicles in the field can provide data similar that what was provided 

from CARLA in this study.  

 

In more detail, predictors could be exported in an FMU (Functional Mockup Unit) format that is 

universal, to be used by systems modeling software. If the predictor is embedded in a vehicle’s 

control module, it could continuously collect data from several sensors (speed, distance, angle, 

overlap, etc.) currently implemented in today’s vehicles. Such information can be accessed by 

predictors right before an accident as input. As output, it could instantly assign the optimum 

ignition time for the seatbelt and airbags (or other safety features) right before the accident, 

based on the specific input during that accident, to achieve the minimum head injury (HIC15) 

for the occupants.  
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