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ABSTRACT –Oil pipelines often subjected from the cyclic loading during its services, such as 
bending loading. So it is very significant for the oil pipe to carry out the fatigue life prediction 
under the reciprocating bending load and to investigate the damage and fracture in different 
cycle times by using of numerical analysis in the fields of oil and chemical industry. Low-
cycle fatigue analysis using the direct cyclic approach was implemented in two different FEM 
models whether to consider the inner pressure in the pipe or not. The result indicated that 
there are almost the same cycle times, damage state and fracture morphology for the 
analysis and the experiments. 
 
 
1. Introduction 
 
The coiled tubing Drilling (CTD) is an advanced drilling technology by the use of the 
continuous tubes. Its development of the application began in the 90's. According to the 
different drilling methods, CTD is classified into directional well drilling and vertical shaft 
drilling. There are many advantages for coiled tubing Drilling, such as small footprint to suit 
for the many unlimited regions or operation on the sea, especially good in the slim hole and a 
method of drilling with low-cost and high-quality. The continuous tubes are also used in 
petroleum transmission pipeline. So its mechanics performance especially the low fatigue 
property is wildly concerned in the field of oil or chemical industry when suffering from the 
large bending and torsion deformation.  
 

2. Experiment methods 
 
The experiments of low fatigue of continuous tubes are commonly carried out before it is 
used. An experimental facility is designed and manufactured to test the low fatigue properties 
of coiled tube. The length and high of coiled tube experimental facility is 1300mm and 
1500mm, respectively. The vertical frame support structure is used in this mechanical system 
(Fig. 1). There is "V"-shaped jig and fixture to fix the freedom on the facility, which consists of 
straightening module and flexural module. By changing the different flexural module, we can 
test the fatigue life of coiled tube with different diameters. In addition, because it is hard to 
remove, so a flange is designed to drive the flexural module along the horizontal direction. 
When the experiment is carried out, the bottom of coiled tube is fixed by the left and right 
holder, which can protect this region not suffering from the bending shear force and improve 
the reliability of experimental data. The top of coiled tube remove along the designed track by 
the hinged shaft installed on the frame, which consists of plate, sheet stiffener and base 
beam. An axial actuator is fixed on the piston rod. The coiled tube is installed on the position 
of hinged connection to make sure that the motion of piston rod is coincident to the linear 
track.  
 
Two experiments of testing the fatigue of coiled tube were carried out. They are the bend 
along the designed track without or with the inner pressure in the coiled tube. The length of 
coiled tube is 1500mm, and the diameter of coiled tube is 38.1mm, the deflection of bending 
is about 30°. The experimental results indicated that the number failure cycling for the coiled 
tube without inner pressure is about 1000 times, and the number failure cycling for the coiled 
tube with inner pressure about 34.47MPa is about 264 times, respectively. There are almost 
positions of failure for the two different coiled tubes. 
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A direct cyclic analysis is a quasi-static analysis; uses a combination of Fourier series and 
time integration of the nonlinear material behavior to obtain the stabilized cyclic response of 
the structure iteratively; avoids the considerable numerical expense associated with a 
transient analysis; is ideally suited for very large problems in which many load cycles must 
be applied to obtain the stabilized response if transient analysis is performed; can be 
performed with linear or nonlinear material with localized plastic deformation; can be used to 
predict the likelihood of plastic ratchetting; assumes geometrically linear behavior and fixed 
contact conditions; uses the elastic stiffness, so the equation system is inverted only once; 
and can also be used to predict progressive damage and failure for ductile bulk materials 
and/or to predict delamination/debonding growth at the interfaces in laminated composites in 
a low-cycle fatigue analysis.  
 
A low-cycle fatigue analysis is characterized by states of stress high enough for inelastic 
deformation to occur; is a quasi-static analysis on a structure subjected to sub-critical cyclic 
loading; can be associated with thermal as well as mechanical loading; uses the direct cyclic 
approach to obtain the stabilized cyclic response of the structure directly; models progressive 
damage and failure in bulk ductile material based on a continuum damage approach, in 
which case damage initiation and evolution are characterized by the accumulated inelastic 
hysteresis strain energy per stabilized cycle; models progressive delamination growth at the 
interfaces in laminated composites, in which case the onset and growth of fatigue 
delamination at the interfaces are characterized by the relative fracture energy release rate; 
uses the damage extrapolation technique to accelerate the low-cycle fatigue analysis; and 
assumes geometrically linear behavior and fixed contact conditions within each loading cycle. 
 
It is well known that after a number of repetitive loading cycles, the response of an elastic-
plastic structure, such as an automobile exhaust manifold subjected to large temperature 
fluctuations and clamping loads, may lead to a stabilized state in which the stress-strain 
relationship in each successive cycle is the same as in the previous one. The classical 
approach to obtain the response of such a structure is to apply the periodic loading 
repetitively to the structure until a stabilized state is obtained. This approach can be quite 
expensive, since it may require the application of many loading cycles before the stabilized 
response is obtained. To avoid the considerable numerical expense associated with a 
transient analysis, a direct cyclic analysis can be used to calculate the cyclic response of the 
structure directly. The basis of this method is to construct a displacement function u(t) that 
describes the response of the structure at all times t during a load cycle with period T as 
shown in Fig. 3a. The direct cyclic analysis capability in Abaqus/Standard provides a 
computationally effective modeling technique to obtain the stabilized response of a structure 
subjected to periodic loading and is ideally suited to perform low-cycle fatigue calculations on 
a large structure. The capability uses a combination of Fourier series and time integration of 
the nonlinear material behavior to obtain the stabilized response of the structure directly. The 
direct cyclic low-cycle fatigue procedure models the progressive damage and failure both in 
bulk materials (such as in solder joints in an electronic chip packaging) and at material 
interfaces (such as in laminated composites). The response is obtained by evaluating the 
behavior of the structure at discrete points along the loading history. The solution at each of 
these points is used to predict the degradation and evolution of material properties that will 
take place during the next increment, which spans a number of load cycles,ΔN. The 
degraded material properties are then used to compute the solution at the next increment in 
the load history. Therefore, the crack/damage growth rate is updated continually throughout 
the analysis. The elastic material stiffness at a material point remains constant and contact 
conditions remain unchanged when the stabilized solution is computed at a given point in the 
loading history. Each of the solutions along the loading history represents the stabilized 
response of the structure subjected to the applied period loads, with a level of material 
damage at each point in the structure computed from the previous solution. This process is 
repeated up to a point in the loading history at which a fatigue life assessment can be made. 
In bulk material the cyclic loading leads to stress reversals and the accumulation of plastic 
strains, which in turn cause the initiation and propagation of cracks. The damage initiation 
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